1 (i)	trials of at calculating $\mathrm{f}(x)$ for at least one factor of 30 details of calculation for $f(2)$ or $f(-3)$ or $f(-5)$ attempt at division by $(x-2)$ as far as $x^{3}-2 x^{2}$ in working correctly obtaining $x^{2}+8 x+15$ factorising a correct quadratic factor $(x-2)(x+3)(x+5)$	A1 M1 A1 M1 A1	M0 for division or inspection used or equiv for $(x+3)$ or $(x+5)$; or inspection with at least two terms of quadratic factor correct or B2 for another factor found by factor theorem for factors giving two terms of quadratic correct; M0 for formula without factors found condone omission of first factor found; ignore ' $=0$ ' seen allow last four marks for $(x-2)(x+3)(x+5)$ obtained; for all 6 marks must see factor theorem use first
$1 \quad \text { (ii) }$	sketch of cubic right way up, with two turning points values of intns on x axis shown, correct ($-5,-3$, and 2) or ft from their factors/ roots in (i) y-axis intersection at -30	B1 B1 B1	0 if stops at x-axis on graph or nearby in this part mark intent for intersections with both axes or $x=0, y=-30$ seen in this part if consistent with graph drawn

1 (iii)	($x-1$) substituted for x in either form of eqn for $y=\mathrm{f}(x)$ $(x-1)^{3}$ expanded correctly (need not be simplified) or two of their factors multiplied correctly correct completion to given answer [condone omission of ' $y=$ ']	M1 M1 dep M1	correct or ft their (i) or (ii) for factorised form; condone one error; allow for new roots stated as $-4,-2$ and 3 or ft or M1 for correct or correct ft multiplying out of all 3 brackets at once, condoning one error $\left[x^{3}-3 x^{2}\right.$ $\left.+x^{2}+2 x^{2}+8 x-6 x-12 x-24\right]$ unless all 3 brackets already expanded, must show at least one further interim step allow SC1 for $(x+1)$ subst and correct exp of $(x+1)^{3}$ or two of their factors ft or, for those using given answer: M1 for roots stated or used as $-4,-2$ and 3 or ft A1 for showing all 3 roots satisfy given eqn B1 for comment re coefft of x^{3} or product of roots to show that eqn of translated graph is not a multiple of RHS of given eqn

$\mathbf{2}$	(i)	cubic correct way up and with two turning pts touching x-axis at -1, and through it at 2.5 and no other intersections y-axis intersection at -5	B1	B1
$\mathbf{2}$	(ii)	$2 x^{3}-x^{2}-8 x-5$		
intns must be shown labelled or worked				
B1		2	B for 3 terms correct or M1 for correct expansion of product of two of the given factors	

3	iA	expansion of one pair of brackets correct 6 term expansion	M1 M1	eg $[(x+1)]\left(x^{2}-6 x+8\right)$; need not be simplified eg $x^{3}-6 x^{2}+8 x+x^{2}-6 x+8 ;$ or M2 for correct 8 term expansion: $x^{3}-4 x^{2}+x^{2}-2 x^{2}+8 x-4 x-2 x+$ 8, M1 if one error allow equivalent marks working backwards to factorisation, by long division or factor theorem etc or M1 for all three roots checked by factor theorem and M1 for comparing coeffts of x^{3}	
	iB	cubic the correct way up x-axis: $-1,2,4$ shown y-axis 8 shown	$\begin{aligned} & \text { G1 } \\ & \text { G1 } \\ & \text { G1 } \end{aligned}$	with two tps and extending beyond the axes at 'ends' ignore a second graph which is a translation of the correct graph	

\begin{tabular}{|c|c|c|c|}
\hline iC \& $$
\begin{aligned}
& {[y=](x-2)(x-5)(x-7) \text { isw or }} \\
& (x-3)^{3}-5(x-3)^{2}+2(x-3)+8 \\
& \text { isw or } x^{3}-14 x^{2}+59 x-70
\end{aligned}
$$
$$
(0,-70) \text { or } y=-70
$$ \& 2

1 \& | M1 if one slip or for $[y=] f(x-3)$ or for roots identified at $2,5,7$ or for translation 3 to the left allow M1 for complete attempt: $(x+4)(x+$ 1) $(x-1)$ isw or $(x+3)^{3}-5(x+3)^{2}+2(x+3)+8$ isw |
| :--- |
| allow 1 for $(0,-4)$ or $y=-4$ after $\mathrm{f}(x$ +3) used | \\

\hline \multirow[t]{6}{*}{ii} \& $$
\begin{aligned}
& 27-45+6+8=-4 \text { or } 27-45+ \\
& 6+12=0
\end{aligned}
$$ \& B1 \& or correct long division of $x^{3}-5 x^{2}+$ $2 x+12$ by $(x-3)$ with no remainder or of $x^{3}-5 x^{2}+2 x+8$ with rem -4 \\

\hline \& long division of $f(x)$ or their $f(x)+4$ by $(x-3)$ attempted as far as $x^{3}-$ $3 x^{2}$ in working \& M1 \& or inspection with two terms correct eg $(x-3)\left(x^{2} \ldots \ldots \ldots-4\right)$ \\
\hline \& $x^{2}-2 x-4$ obtained \& A1 \& \\

\hline \& $$
\begin{aligned}
& {[x=] \frac{2 \pm \sqrt{(-2)^{2}-4 \times(-4)}}{2} \text { or }} \\
& (x-1)^{2}=5
\end{aligned}
$$ \& M1 \& dep on previous M1 earned; for attempt at formula or comp square on their other 'factor' \\

\hline \& $\frac{2 \pm \sqrt{20}}{2}$ o.e. isw or $1 \pm \sqrt{5}$ \& A1 \& \\
\hline \& \& \& \\
\hline
\end{tabular}

